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The thermoelastic wave propagation in a tetragonal syngony anisotropic medium of classes 4, 4/m having heterogene-
ity along z axis has been investigated by employing matrizant method. This medium has an axis of second-order symmetry
parallel to z axis. In the case of the fourth-order matrix coefficients, the problems of wave refraction and reflection on the
interface of homogeneous anisotropic thermoelastic mediums are solved analytically.
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1. Introduction
The theory of elasticity is concerned with the mutual in-

teraction between the mechanical and thermal fields in elas-
tic objects.[1,2] This theory has many important applications
in various engineering disciplines, such as civil, mechanical,
and nuclear engineering. It is based on the famous hypothesis
of Fourier law of heat conduction, by which the temperature
distribution is described through parabolic differential equa-
tions. According to the theory of elasticity, the thermal signal
is propagated instantly throughout the object, which is phys-
ically impossible since a finite time is required for the sig-
nal propagation. In order to resolve this problem and account
for the influence of thermal relaxation time, a modified ver-
sion of Fourier law known as the generalized thermoelasticity
has been proposed. In this modified theory, hyperbolic-type
equations are used to predict the heat distribution, hence, the
heat propagation in the condensed matter is considered as a
wave rather than a diffusion process. In order to investigate
the transmission phenomena of waves in anisotropic media
with different mechanical and physical properties, matrizant
method was employed.[3,4] However, the investigation of ther-
moelastic wave propagation is based on the simultaneous solu-
tion of motion equations and the exact solution of these motion
equations can be obtained in integrable cases.[5–7]

The application of matrizant method to non-destructive
testing and the wave propagation in thermoelastic media can
be found in Ref. [8]. Meanwhile, the propagation of heat wave
along an arbitrary axis in orthotropic thermoelastic plates have
been investigated by normal modes expansion method.[9] The
work in Ref. [9] was done by using the generalized theory of

thermoelasticity with single thermal relaxation time. The gen-
eralized theory of thermoelasticity has also been used when
free harmonic waves interact with media composed of differ-
ent layers. In such a case, the investigation was made by a
technique combining linear transformation and transfer ma-
trix method. By using this technique, the solutions in the case
with interaction between free harmonic waves and layered me-
dia can be obtained. The importance of these solutions is that
they provide dispersion characteristics of multilayered media.

2. Basic equations and formulation
The study of the propagation of thermoelastic waves in

anisotropic media is based on the simultaneous solution of
equations of motion. The equations of thermal conductivity
proposed by Fourier have the following form:[1]

σi j, j = ρÜi, (1)

λi j
∂θ

∂x j
=−qi, (2)

∂qi

∂ xi
=−iωβi jεi j− iω

cε

T0
θ , (3)

where σi j are the components of stress tensor, ρ is the density
of medium, λi j are the components of the thermal conductivity
tensor, qi are the components of the heat flow vector, ω is the
angular frequency, βi j are the thermomechanical parameters of
medium, εi j are the components of the tensor of small Cauchy
deformation, cε is the heat capacity under constant deforma-
tion, and θ = T − T0 is the temperature augments compared
with natural state temperature T0. When deformation is small,
|θ/T0| � 1.
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The relationship between stress and strain can be de-
scribed by Duhamel–Neumann relation as

σi j = ci jklεkl−βi jθ . (4)

Here, equations (1)–(4) show that the relationship between
temperature and stress generated in mechanical process is a
function of the thermal field and deformation whereas they are
independent variables.

By using the method of separation of variables, equa-
tions (1)–(4) can be reduced to a system of ordinary differen-
tial equations (medium heterogeneity is assumed along the z
axis, i.e., axis z ‖ A2. where A2 is the symmetry axis of second
order) as

d𝑊
dx

=𝐵𝑊 , (5)

where boundary condition column vector 𝑊 is given as

𝑊 (x,y,z, t) = [uz(z),σzz,ux(z),σxz,uy(z),σyz,qz,θ ]
t

× exp(iωt− imx− iny), (6)

where uz(z), ux(z), and uy(z) represent the projections of dis-
placement vector on the corresponding coordinates, i is an
imaginary number, and m = kx, n = ky, showing x and y com-
ponents of a wave vector 𝑘, respectively, and the coefficient
matrix is given as

𝐵 = B
[
ci jkl(z),βi j(z),θ ,ω,m,n, l

]
. (7)

Here, the elements of coefficient matrix 𝐵 in Eq. (7) contain
the wave propagation information in the medium. In this pa-
per, we analyzed the coefficient matrix 𝐵 to determine the
polarization of the waves and the relationship among them di-
verging with the influence of thermomechanical effect.

3. The problem of wave reflection

We consider the problem of thermoelastic wave reflec-
tion at the interface between isotropic and anisotropic half-
space environment tetragonal syngony classes 4, 4/m with
thermomechanical effect. Because of thermomechanical ef-
fects, bound thermoelastic waves propagate in the thermoelas-
tic medium.

We suppose that the interface separating two media is
z = 0 plane so that the axes of the Cartesian coordinate sys-
tem coincide with the corresponding crystallographic axes as
shown in Fig. 1. We also suppose that the thermal wave strikes
at the interface of an isotropic medium, that is, the heat flux
vector lies in the plane of incidence. The incidence plane is
the plane that contains vectors perpendicular to the interface
and heat flux vector.

θ

m
k5

kT

m
k4

ku

↩ku

k2
m

↩kT1

mk3

z

kT

m
k1

x

isotropic 

medium
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Fig. 1. Geometry of the problem. Here, m is the x component of a wave vector 𝑘, while k1, k2, k3, k4, k5 represent the projections
of a wave vector on respective axes in isotropic and anisotropic media, ku1, ku2, kT 1, kT 2 represent the projections of wave vector in
isotropic and anisotropic media respectively. These projections depend on displacement vector 𝑢 and heat flux vector 𝑞.

In this case, the incident thermal wave in an anisotropic
medium is related to the elastic longitudinal wave of z polar-
ization, and equations (5) can be written as

dUz

dZ
=

1
c33

σzz +
2β13 +β33

c33
θ ,

dσzz

dZ
=−ρω2 Uz,

dθ

dz
=− 1

λ33
qz,

dqz

dZ
=−iω

2β13 +β33

c33
σzz− iω

(
cε

0
+

β 2
33

c11

)
θz,

(8)

which can also be written in a matrix form as

d𝑤
dz

=𝐵2𝑤, (9)

where 𝑤 = (uy,σyz,θ ,qz)
t and

𝐵2 =


0 b12 b17 0

b21 0 0 0
0 0 0 b78
0 −iω b17 b87 0

 (10)

is the coefficient matrix of the second medium. The compo-
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nents of 𝐵2 have the following form:

b12 =
1

c33
, b17 =

(2β13 +β33)

c33
,

b21 =−ω
2
ρ, b87 =−iω

(
β 2

33
c11

+
cε

T0

)
,

b78 =−
1

λ33
.

The matrizant of the second medium (direct wave) can be writ-

ten as

T+
2 (0) =

1
2
(E + iαR2), (11)

with

α =
1

kT 2ku2(kT 2 + ku2)
. (12)

Here, ku2 and kT 2 represent z components of the wave vector
in the second medium. For the matrix coefficients 𝐵2 given in
Eq. (10), we write

ku2 =

√√√√1
2

(
−b12b21−b78b87− (b12b21−b78b87)

√
1−

4iωb2
17b21b78

(b12b21−b78b87)2

)
, (13)

kT 2 =

√√√√1
2

(
−b12b21−b78b87 +(b12b21−b78b87)

√
1−

4iωb2
17b21b78

(b12b21−b78b87)2

)
. (14)

Whereas we define

a =−b12b21−b78b87, (15)

∆ = (b12b21−b78b87)

√
1−

4iωb2
17b21b78

(b12b21−b78b87)2 , (16)

and introduce a matrix 𝑅2 for the matrix coefficients 𝐵2 given
in Eq. (10) and as a result, we obtain

𝑅2 =


0 r12 r13 0

r21 0 0 r24
−iωr24 0 0 r34

0 −iωr13 r43 0

 , (17)

with

r12 =−b78(iωb2
17 +b12b87)−b12

√
b21b78(iωb2

17 +b12b87),

r13 = b17

√
b21b78(iωb2

17 +b12b87),

r21 =−b21b78b87 +b21

√
d21b78(iωb2

17 +b12b87),

r24 = b17b21b78,

r34 =−b12b21b78 +b78

√
b21b78(iωb2

17 +b12b87),

r43 =−b21(iωb2
17 +b12b87)+b87

√
b21b78(iωb2

17 +b12b87).

In an isotropic medium, the incident thermal wave is not
related to the elastic properties of medium, so the coefficient
matrix of the first medium 𝐵1 takes the form

𝐵1 =


0 b12 0 0

b21 0 0 0
0 0 0 b78
0 0 b87 0

 , (18)

with

b12 =
2

c11− c12
, b21 =−ρ1ω

2 +
m2(c11− c12)

2
,

b78 =−
1

λ11
, b87 =−

iωcε

T0
.

As is seen from matrix (18), the coefficient matrix 𝐵1 can
be divided into two matrices of second order, so matrizant of
the first medium, i.e., the isotropic medium, can be written as

𝑇±ycp =
1
2

(
𝐸∓ 〈𝐵〉

ik

)
e∓ikz. (19)

As a result, we obtain

𝑇±1 =


1 ± ib12

ku1
0 0

± ib21

ku1
1 0 0

0 0 0 0
0 0 0 0


e∓iku1z

2

+



0 0 0 0
0 0 0 0

0 0 1 ± ib78

kT 1

0 0 ± ib87

kT 1
1


e∓ikT 1z

2
, (20)

with

ku1 =
√
−b12b21, kT 1 =

√
−b78b87, (21)

representing the z-component wave vectors of the first
medium.

Substituting the matrizant of the second medium
(Eq. (11)), Eq. (17), and the matrizant of the first medium
(Eq. (20)) into a matrix 𝐺, we obtain

𝐺=


g11 0 0 g14
0 g22 g23 0
0 g32 g33 0

g41 0 0 g44

 , (22)
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with

g11 =−1+
2b21(b78 + kT 1r34α)

∆1
, g14 =−

2b78ku1r24α

∆1
,

g22 =−1+
2b12(b87 + kT 1r43α)

∆2
,

g23 =−
2b87ku1r13α

∆2
, g32 =

2iωb12kT 1r13α

∆2
,

g33 =−1+
2b87(b12 + ku1r12α)

∆2
,

g41 =
2iωb21kT 1r24α

∆1
, g44 =−1+

2b78(b21 + ku1r21α)

∆1
,

∆1 = b21(b78 + kT 1r34α)+ ku1α(b78r21

+ kT 1α(iωr2
24 + r21r34)),

∆2 = b12(b87 + kT 1r43α)+ ku1α(b43r12

+ kT 1α(iωr2
13 + r12r43)).

The amplitude of incident wave vector can be written as

𝑤0 = (0,0,θ0,q0)
t , (23)

which relates the amplitudes of the temperature increment θ0

and heat flux q0 of the incident thermal wave field and

θ0 =
ib78

kT 1
q0 or θ0 =

kT 1

ib87
q0. (24)

According to Eqs. (22) and (23), the amplitudes of re-
flected and refracted wave vectors can be written as

ur = g14q0,

σr = g23θ0,

θr = g33θ0,

qr = g44q0,

(25)


ut = g14q0,

σt = g23θ0,

θt = (1+g33)θ0,

qt = (1+g44)q0.

(26)

It can be seen from expressions (25) and (26) that due to the
incident thermal wave, ur = ut and σr = σt.

Similarly, according to Eqs. (19) and (20), the amplitudes
of displacement and stress of reflected waves are given as

𝑤refl(0) = T−1 (0)𝑤r =𝑤r, (27)

𝑤refr(0) = T+
2 (0)𝑤t =𝑤t, (28)

and the amplitudes of temperature and heat flux of reflected
and refracted waves are given as

σr =−
ku1

ib12
ur or σr =−

ib21

ku1
ur, (29)

θr =−
ib78

kT 1
qr or qr =−

kT 1

ib87
qr, (30)

ut = iα(r12σt + r13θt),

σt = iα(r21ut + r24qt),

θt = iα(−iωr24ut + r34qt),

qt = iα(−iωr13σt + r43θt).

(31)

According to the matrizant of the first medium 𝐵1

(Eq. (19)) and matrix (20), for the incident wave 𝑤nao = T+
1 𝑤0

and 𝑤omp = T−1 𝑤r for the reflected wave, the incident heat
wave, reflected elastic, and thermal waves can be written in
explicit forms as {

θ nao
z = θ0 e−ikT 1z,

qnao
z = q0 e−ikT 1z,

(32)


uomp

z = g14q0 e iku1z,

σ
omp
zz = g23θ0 e iku1z,

θ
omp
z = g33θ0 e ikT 1z,

qomp
z = g44q0 e ikT 1z.

(33)

According to Eqs. (8), (35), and (33), we can calculate
the energy fluxes of the reflected elastic and thermal waves.
Finally, the flow of heat energy is given by

qT = θ𝑞, (34)

while the flow of elastic energy is given by

Pj =−σi j
∂ui

∂ t
. (35)

4. Conclusion

In this paper, based on the matrizant method,[4] the propa-
gation of thermoelastic waves in an anisotropic medium tetrag-
onal syngony of classes 4, 4/m, in the case of inhomogeneity
along z axis has been studied. We have analytically solved
the problem of reflection and refraction at the boundary of the
homogeneous anisotropic thermoelastic media, in the case of
coefficient matrices having order 4. It is expected that our re-
sults will be useful for future experiments in various branches
of civil and mechanical engineering.
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